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Overview: Production-grade, open source, scalable
runtime integrates into HPC PowerStack

Problem:
— Power and energy are critical constraints for exascale

— Inefficient power management results in limited application performance, job
throughput and system utilization, leading to added operational costs

— Existing approaches are ad-hoc research codes (Conductor, Adagio, RMAP, etc.) and
have several scalability and portability limitations

Solution:

— Production-grade, industry-supported, open-source, job-level runtime (GEOPM)
suitable for integration with resource manager/software stack

— Algorithms to analyze critical path of applications, distribute power intelligently to
hardware components, mitigate variation, support portability to upcoming architectures
and task-based programming models
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Impact goals and impact metrics

UL CEL RTE-Re R el S0 o)) (o (o 8 Number of ECP benchmarks, scientific applications, system software
ECP-enabled applications. components, and processor architectures that have been integrated with

GEOPM.

DT S{E TRV CREY CIHT L RIG [ ETES Using multiple benchmarks, proxy applications and applications, sample
I T TV e T Y o A [ B T T S instantaneous power and measure total energy, and demonstrate system-
specified bounds are not exceeded.

Optimize runtime in power and Show percentage runtime performance improvement across a selected
1 e AT TS = T e RETV T 1y [ 1 LS suite of multiple benchmarks, proxy applications and codes while

with an expected average maintaining power at or under the system-specified bound. Comparison
improvement of 20%*. will be made with naive uniform static power allocation and/or with full-
energy execution. (*Exact improvements will depend on underlying
processor architecture and application characteristics).
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Power Steering can accomplish more science per dollar
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Power Steering can improve Time To Solution
(TTS) by up to 30% on ECP applications

30% improvement in TTS translates to 30% of
power savings

Example:

« If we assume a 30 MW system that is
operational for 5 years, this is equivalent
to 30 MW * 30% * 5, or 45 MW-Years

« Assuming a power cost of $1M per MW-
year, that is $45M for additional science
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New power model with configuration space exploration

Updated model to handle manufacturing variation
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https://github.com/amarathe84/geopm/tree/dev/ecp
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» Select application
configurations
intelligently at runtime

» Address manufacturing
variation with a non-
linear model

sp-mz, 4500W power bound
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Port GEOPM to non-Intel architecture (IBM Power9)

Purchased an IBM Power9 Witherspoon node for the

Power Lab at LLNL
o Allows for isolated root access, low level firmware

development, disabling of features such as secure boot
o Replica of a Sierra node, which allows developed software

to be easily transferrable

Developed DVFS-based model for GEOPM, explored

OCC (on-chip controller) options

|dentified a bug in IBM OPAL firmware
o Did not account for scenarios where GPUs were not used

o Did not allow for setting of correct power caps
o Did not expose knobs for TurboBoost/UltraScale
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https://github.com/amarathe84/geopm/tree/ibm-port

Power Capping Ranges
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Evaluate Legion applications, design power management

for task-based models
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* Successful integration of Legion and GEOPM, not implemented as a plugin due to MPI-related restrictions in
current version of GEOPM

* Created a new DAXPY benchmark for evaluation
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https://github.com/scott-walker-lInl/legion-geo-interop
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Scientific workflows need fine-grained power management

RAS Cancer Simulation Workflow Isosurfacing and Visualizations
Main code used
for module:
)
(CG analysis | | Moose
—
e CGruns )
CG setup Python
)
ddcMD
L jj\ -
WF Manager s \ \
\/ Gromacs Ranks with
—_ less work Rank with
lots of work

» Load imbalance cannot be addressed directly as memory may be shared between simulation,
analysis and visualization components making data movement challenging

« Parts of large-scale workflows may not utilize GPUs or certain cores
 Critical path can be sped up by directing power to relevant tasks ’-\\ R
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Explore interfaces for GEOPM and HPC batch schedulers
for ECP Argo

Job )
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Implement and test power-aware SLURM at
scale
Explore interfaces for fine-grained

management and identify range of
improvement

Five job mixes, 5 levels of overprovisioning
to understand the impact of degree of
overprovisioning

lvyBridge cluster HA8K in Japan, 965 nodes

Sweet spot around 680 nodes shows that
hardware overprovisioning with GRM can
give better utilization and up to 40% higher
throughput
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Summary and Next Steps

. Cluster-level power bound,
Site-level

fairess and priority requirements
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» We are collaborating with scientific workflow teams, engaging users and evaluating more ECP
applications

« We are supporting multiple architectures and helping with community outreach
through the HPC PowerStack charter
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Thanks!
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